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Abstract

Honeybees are social insects that utilize
pheromone signals to direct each other, resulting
in emergent swarm behavior. Research has shown
that bees can solve the shortest path problem and
locate their queen by directing these pheromone
signals, or “scenting,” to create a communication
network collectively (2); however, little work has
been done to study how the behavior of the bees
changes when in the presence of the swarm. This
study aims to investigate how the decisions of
individual honeybees affect the foraging and ag-
gregation process of the collective . We utilize
state-of-the-art video object tracking and segmen-
tation tools to gather time- series data on the scent-
ing behaviors of individual bees when separated
from their queen. Combining this with additional
computer vision approaches described in the lit-
erature, We analyze the behavior patterns of the
individuals as the swarm forages for and aggre-
gates around the queen. Through this analysis,
We anticipate the time-series data from individual
honeybees will display a predictable relationship
between scenting and exploring that allows for
the emergent pathfinding capability of the swarm
. This improved tracking of individual honeybees
will allow us to increase the accuracy of the multi-
agent reinforcement learning model to predict the
behaviors of the swarm. These improvements di-
rectly impact swarm robotics and tasks such as
patrolling, disaster recovery, and search and res-
cue, where it is important to create a low- resource
distributed system that can rapidly adapt to new
operating conditions.
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1. Introduction

A vast body of research has surrounded the topic of hon-
eybee swarms. To become a coherent swarm, bees locate
their queen by tracking her pheromones. Previous work
has shown that bees collectively create a scenting-mediated
communication network by arranging in a specific spatial
distribution where there is a characteristic distance between
individuals and directional signaling away from the queen.
Rather than depositing static information in the environ-
ment, individual bees locally sense and globally manipulate
the physical fields of chemical concentration and airflow.
Individual bees act as receivers and senders of signals by
using the Nasonov scenting behavior, releasing pheromones
from the glands and fanning their wings to direct the sig-
nals backward. In this network, scenting bees stand at a
characteristic distance from their neighbors while dispers-
ing signals, which suggests a concentration threshold in the
activation mechanism of individual bees’ scenting behavior.
The scenting events are highly correlated with the collective
aggregation around the queen (3).

Despite previous research showing the correlation between
scenting events and collective aggregation around the queen,
little work has been done to study how the behavior of
individual bees changes when in the presence of the swarm.
This was because we were only able to detect the states of
the bees; however, previous methods were not able to able
to track them over longer periods of time.

2. Methods

To track individual bees and understand their behavior in
the presence of the swarm, we established a environment in
which worker bees search for a stationary caged queen in a
semi—-two-dimensional (2D) arena. We recorded the search
and aggregation behavior of the bees from an aerial view
with tests containing one, two, three, and four worker bees.
To extract data from the recordings, we then developed a
markerless, semi-automatic, highly accurate tracking and
segmentation algorithm using a variety of computer vision
methods (3). This pipeline improves upon previous work by
allowing us to detect and track individual bees throughout
the video, while also identifying the positions and orienta-
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Algorithm 1 Honeybee Tracking and Segmentation

background = get_background(video)
for frame € video do
processed = preprocess( frame, background)
contours = form_contours(processed)
tracks = create_tracks(contours, prev_tracks)
groups = [group in tracks]
if len(groups) > 0 then
split_tracks = split_groups(tracks)
tracks.remove(groups)
tracks.extend(split_tracks)
end if
frame = draw_tracks(frame, tracks)
show_frame(frame)
prev_tracks = split_tracks
end for

tions of scenting bees each frame.

2.1. The Algorithm

get_background(video) - Since the background of our
video is stationary we utilize a standard method of video
background subtraction by defining the background to be
the median of each frame. By using this temporal median
approach, we can approximate the background pixels and
utilize that for background subtraction.

Figure 1. get_background()

preprocess(frame, background) - To preprocess our frame,
we utilize traditional image processing techniques to isolate
the honeybees. We start by subtracting the background from
the current frame. From there, we blur the resulting image
in order to reduce noise for our next step, thresholding. We
apply a binary threshold to the grayscale image to isolate the
bees. After this step, we apply a variety of morphological
image operations in order to reduce the noise and improve
the consistency of detecting the honeybees within the thresh-
olded image. As a final step, depending on the quality of
the resulting video we remove pixels of irrelevant artifacts
such as the queen’s cage or the border of the arena.

form_contours(processed) - We utilize the method de-
scribed by Suzuki et al. (4) to form contours from the

\

Figure 2. preprocess()

topological features of the preprocessed frame. We then
leverage the topological structural analysis of the method to
lift the bee contours from the background. Finally, an area
filter is applied to remove noise from the resulting contours.

%

Figure 3. form_contours()

create_tracks(contours, prev_tracks) - A “track” is an
object that contains labels, a center point, and a contour. We
form these track objects and assign labels based on a greedy
search algorithm that identifies the nearest previous track
and takes that label.

%«orker 5.2

Figure 4. create_tracks()

split_groups(tracks) - This function is the bulk of the bee
tracking pipeline. In order to segment the individual bees
from the group, we leverage the watershed algorithm. The
watershed transformation treats the image it operates upon
like a topographic map, with the brightness of each point
representing its height, and finds the lines that run along the
tops of ridges. Specifically we implement one of the variants
of watershed, non-parametric marker-based segmentation
algorithm, described by Meyer (1). Since the watershed
algorithm requires landmark points to start, we utilize the
previous center points for each of the track objects.
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(a) Two honeybees detected by
the tracker

tected by the tracker

(b) Two clustered honeybees de-(c) Three honeybees detected by
the tracker

(d) Three clustered honeybees
detected by the tracker

Figure 5. Honeybee tracking and segmentation results

If the current frame is the first frame and group separation
is needed, then we enter a manual landmark selection mode
where users can select the centers of the honeybees then
run the watershed algorithm. After separating the honey-
bees, we then use the same greedy algorithm to relabel the
contours and form the track objects.

Despite this process functioning a majority of the time, there
are edge cases where it can fail such as when bees are on
top of one another or if they rotate while being grouped.
In order to mitigate these issues, we implemented a pro-
gressive color thresholding technique where bee contours
are recalculated based on thresholding based on the color
at the watershed landmark. We start with a large range of
color values and progressively restrict the range until the
watershed algorithm can separate the contours.

This additional step fixes a myriad of edge cases but oc-
casionally the algorithm still cannot separate the contours.
In this scenario, we enter a manual mode where users can
select the landmarks for the watershed algorithm. Including
this manual mode ensures that the resulting tracking objects
are highly accurate and temporally consistent.

Figure 6. split_groups()

2.2. Figures

This algorithm is able to detect, track, and segment multiple
honeybees throughout the entirety of the video analysis. We

can see in Figure 5b and Figure 5d that the labels of the
honeybees are preserved despite their bodies overlapping.
The results of this highly-accurate segmentation are shown
in Figure 5a and 5c. The bees are segmented properly, but
their labels are also temporally consistent, so the labels for
the bees at the start of the video are the exact same labels
at the end of the video. This temporal consistency is ex-
actly why the algorithm exceeds the performance of other
state-of-the-art methods.

3. Results

By combining our novel algorithm with the honeybee scent-
ing detection system developed in Nguyen et. al. (3) we
are able to generate long-term trajectories for individual
honeybees, and overlay these trajectories with individual
scenting events as shown in Figure 7.

(a) Short-term trajectories

(b) Long-term trajectories

Figure 7. Honeybee trajectories

From this trajectory data, we then generate a number of plots
to visualize the distribution of honeybee scenting events.
These plots allow us to better understand the correlation
between the time-series data and the density of scenting
events.
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3.1. Time Series Data
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Figure 8. Time Series Data
We then leverage the data generated from our trajectory
plots to create a time series of the scenting events for each " 10° = Worker 0
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Our histograms plot the distribution of scenting events with
the specified interval length, where the x-axis is the length
(in seconds) of the interval between scenting events and the
y-axis is the number of scenting events that had that interval
length.

An interval is defined as the length of time between the
current scenting event and the previous one. We decided to
group intervals by the nearest 1/8th of a second so the plot
would be easily interpretable (note that the y-axis is on a
logarithmic scale).

We can clearly see most of the scenting events are extremely
quick; however, there are still a significant amount of longer
scenting intervals. To understand the results, we perform a
correlation analysis.
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Figure 9. Honeybee tracking data
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3.3. Correlation Analysis

To better understand the correlation within the time series
data created, we perform a correlation analysis. To simplify
the analysis process we present the correlation results for
our sample test with 2 worker honeybees. For this analysis,
we utilize two metrics of statistical correlation:

1. The ¢ Coefficient (Mean Square Contingency Co-
efficient): This coefficient measures the strength and
direction of a linear relationship between two binary
variables. The binary nature of this correlation met-
ric means that it aligns perfectly with our binary time
series data.

This metric is defined by the following calculation:
N11Moo — N10M01

V1.1 1071

Where each variable is generated from the following
table of binary random variables x and y:

¢ =

y=1|y=0 | total
x=11] nyy | nip | ni.
x=0| mno1 | noo | Mo.
total n1 n.o n

2. The Jaccard Similarity Coefficient: This coefficient
measures the similarity and diversity between two sets
by calculating the intersection of the sets, and divinding
by the union. This metric is defined by the following
equation given two sets A and B:

_|ANB|
- |Au B]

J(A, B)

The ¢ and Jaccard coefficients are defined within the range
of 1 and -1. In this definition, 1 indicates a perfect posi-
tive association such that when one variable is 1, the other
variable is also 1 for every variable in the set. Similarly,
-1 indicates a perfect negative association such that when
one variable is 1, the other variable is 0 for every variable
in the set. Finally, O indicates no correlation between the
two sets of variables. Calculating the ¢ and Jaccard coef-
ficients where wy is the binary time series data generated
from worker bee 0, and w; is the data form worker 1, we
yield the following results:

oy, = 0.09756434

J(wo, wy) = 0.15450

These numbers show a positive correlation between the time
series scenting data of worker 0 and 1, meaning that the raw
scenting data shows a linear relationship between the two
sets. Despite this result, there is usually a delay in the time

that a bee starts scenting, and the time that another bee starts
following that scent.

As a result of this behavior, we also perform a cross-
correlation analysis, where we analyze the relationship be-
tween the time series at different time delays. We start at a
delay of 1 frame (i.e. 1/30th of a second), and increase the
delay by 1 frame until we get to a 300 frame delay (i.e. 10
seconds). We ensure to perform a positive time delay, where
the time series of worker 1 is delayed, and a negative time
delay, where the time series of worker 0 is delayed. Along
with this, we remove the leftover portions on the ends of
each time series so each set is of the same size. Performing
this cross-correlation analysis yields the following results:

Best positive offset = 83 frames

+¢Ewg,w1 = 0.2250229957206299

+J (wo,wy) = 0.2299084435401831

Best negative offset = 31 frames

—(Zgwo ., = 0.15488867376573087

—J(wo,wy) = 0.15488867376573087

4. Conclusion

The best overall result was from a positive offset of 83
frames or 2.77 seconds. Since the correlation is so high
for both metrics, we can infer that worker 1 was overall
following the scent of worker O throughout most of the
video (since a positive offset represents a delay in worker 1’s
scenting data, i.e. pushing the entire time series backwards
in time). Upon a brief visual analysis of the footage, one
can confirm that this is the case. A correlation this high also
indicates that the scenting events of worker 0 often directly
result in the scenting of worker 1. This important distinction
means that the individual decision making process of the
honeybees results in a somewhat predicable relationship
between scenting and exploration (or not scenting). This
confirms our proposed hypothesis.

5. Next Steps

We aim to run similar tests with a larger number of bees so
we can compare our scenting data from a variety of trials in
order to better understand the behavior of individuals in the
presence of the swarm.

Along with this, we hope to improve the tracking algorithm
to be more robust to variation, and require less human inter-
action yet still result in the same high tracking accuracies.
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